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Effect of hydrogen bond networks on the nucleation mechanism of protein folding
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We have recently developed a kinetic model for the nucleation mechanism of protein folding (NMPF) in
terms of ternary nucleation by using the first passage time analysis. A protein was considered as a random
heteropolymer consisting of hydrophobic, hydrophilic (some of which are negatively or positively ionizable),
and neutral beads. The main idea of the NMPF model consisted of averaging the dihedral potential in which a
selected residue is involved over all possible configurations of all neighboring residues along the protein chain.
The combination of the average dihedral, effective pairwise (due to Lennard-Jones-type and electrostatic
interactions), and confining (due to the polymer connectivity constraint) potentials gives rise to an overall
potential around the cluster that, as a function of the distance from the cluster center, has a double-well shape.
This allows one to evaluate the protein folding time. In the original NMPF model hydrogen bonding was not
taken into account explicitly. To improve the NMPF model and make it more realistic, in this paper we modify
our (previously developed) probabilistic hydrogen bond model and combine it with the former. Thus, a con-
tribution due to the disruption of hydrogen bond networks around the interacting particles (cluster of native
residues and residue in the protein unfolded part) appears in the overall potential field around a cluster. The
modified model is applied to the folding of the same model proteins that were examined in the original model:
a short protein consisting of 124 residues (roughly mimicking bovine pancreatic ribonuclease) and a long one
consisting of 2500 residues (as a representative of large proteins with superlong polypeptide chains), at pH
=8.3, 7.3, and 6.3. The hydrogen bond contribution now plays a dominant role in the total potential field
around the cluster (except for very short distances thereto where the repulsive energy tends to infinity). It is by
an order of magnitude stronger for hydrophobic residues than for hydrophilic ones. The range of “residue-
cluster” distances, at which the hydrogen bond effect exists, is twice as long for hydrophobic residues as for

hydrophilic ones.
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I. INTRODUCTION

A well-defined three-dimensional structure [1,2] is neces-
sary for a protein molecule to carry out a specific biological
function. The formation of the native structure of a biologi-
cally active protein constitutes the core of the so-called “pro-
tein folding problem” [3,4]. Many thermodynamic and Ki-
netic aspects of the protein folding process remain
unexplained [5-8].

It is believed that initially an unfolded protein transforms
quickly into a compact (but not native) configuration [9,10].
One of the pathways for the transition from a compact con-
figuration to the native one is similar to nucleation, i.e., once
a critical number of (native) tertiary contacts is established
the native structure is formed rapidly without passing
through any detectable intermediates [6,9—12].

We have recently developed [13,14] a model for the
nucleation mechanism of protein folding (NMPF) in terms of
ternary nucleation by using the first passage time analysis. A
protein was considered as a random heteropolymer [15-17]
consisting of hydrophobic, hydrophilic, and neutral beads
with all the bonds in the heteropolymer having the same
constant length and all the bond angles equal and fixed . The
ionizability of some of protein residues (aspartic and

PACS number(s): 87.15.Cc, 87.15.hm, 82.30.Rs, 82.70.Uv

glutamic acids, lysine, arginine, and histidine) was taken into
account by considering the hydrophilic residues to be of
three subtypes, namely, those which cannot be ionized at all
and those which can (depending on the pH of the surround-
ing solution) be either positively or negatively ionized.

The main idea underlying the NMPF model consists of
representing the overall potential field around a cluster of
native protein residues (i.e., field in which a non-native resi-
due performs a chaotic motion) as a combination of the mean
dihedral potential, effective pairwise potential, and confining
potential. The latter is due to the polymer connectivity that
confines the protein residues around its center. The effective
pairwise potential (for pairwise interactions of a selected
residue with those in the cluster) for an ionized residue con-
tains an electrostatic contribution. The mean dihedral poten-
tial (in which a selected residue is involved) is calculated by
averaging it over all possible configurations of all neighbor-
ing residues along the protein chain. As a function of the
distance from the cluster center, the overall potential field
has a double-well shape, which allows one to develop a self-
consistent kinetic theory for the nucleation mechanism of
protein folding and evaluate its characteristic time (as well as
the temperature dependence of the latter).

In that model [13,14] hydrogen bonding (hb) was taken
into account indirectly through its effect on the diffusion
coefficients of protein residues. On the other hand, hydrogen
bonding plays a crucial role in the formation, stability, and
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polypeptide backbone (main-chain—-main-chain N-H---O
bonds), which are responsible for the formation of the sec-
ondary structure of proteins (both « helices and B sheets),
many hydrogen-bonded interactions are provided by the po-
lar groups of the side chains. Moreover, the biological activ-
ity of proteins appears to depend on the formation of a two-
dimensional hydrogen-bonded network spanning most of the
protein surface and connecting all the surface hydrogen-
bonded water clusters [20-22].

In order to improve our kinetic model for protein folding,
it appeared logical to find a way for explicitly taking into
account the hydrogen bonding “water-water” and “water-
protein residue.” As a first step, we developed a probabilistic
model for the effect of hydrogen bond networks of water
molecules around two solute particles (immersed in water)
on their interaction [23,24]. The probabilistic hydrogen bond
(PHB) approach was applied to the solvent-mediated inter-
action of (a) two spherical hydrophobic solutes [23] and (b)
two infinite parallel plates whereof the surfaces facing each
other have a composite hydrophobic-hydrophilic character
[24] (i.e., they are covered with uniformly distributed hydro-
phobic and hydrophilic sites).

When two hydrophobic particles sufficiently approach
each other, the disruption of boundary water-water hydrogen
bonds in their first hydration layers can give rise to an addi-
tional contribution to their overall interaction potential. Ac-
cording to numerical evaluations, in the interplay between a
decrease in the number of boundary bonds per water mol-
ecule (as a result of the proximity to the foreign hydrophobic
particle) and the possible enhancement [25-27] of such a
bond the former effect is predominant because the larger
number of weaker bulk hydrogen bonds provide a more
negative contribution to the free energy than the smaller
number of stronger boundary hydrogen bonds (BHBs). Con-
sequently, our model suggests that the disruption of the
boundary hydrogen bonds, which occurs when the first two
hydration shells of two particles overlap, results in an attrac-
tive contribution between the particles. This attraction is
naturally short range, appearing only when the separation
between two particles becomes smaller than four lengths of a
hydrogen bond.

To implement the PHB approach into the NMPF model, it
is necessary to slightly modify the former to adapt it to the
particular situations encountered on the nucleation pathway
of protein folding. Indeed, the folded cluster of the protein
consists of three kinds of residues; hence, its surface can be
expected to have a composite (hydrophobic-hydrophilic)
character. On the other hand, a single residue in the unfolded
part of the protein is either hydrophobic or hydrophilic (neu-
tral residues can be treated as hydrophobic as far as their
hydrogen-bonding ability is concerned). Thus, the PHB
model needs to be modified to examine the solvent-mediated
interaction of a spherical particle of composite nature (mod-
eling a folded cluster of a protein) with (1) a spherical hy-
drophobic particle (modeling hydrophobic and neutral pro-
tein residues) and (2) a spherical hydrophilic particle
(modeling hydrophilic protein residues). The additional con-
tributions to the interaction potentials, arising due to the dis-
ruption of hydrogen bond networks around the interacting
particles, will then have to be added to the overall potential
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FIG. 1. A schematic representation of the first two hydration
layers two spherical solutes of radii R and R’ at a distance r be-
tween their centers. The surface of each particle is shown as a thick
solid line. The circles of diameter 7, represent water molecules.
The dashed circle of radius 7 represents a molecule of the solute
particle.

field around a cluster in the NMPF model. As a result, the
water-water hydrogen bonding will be taken explicitly into
account in a kinetic model for the nucleation mechanism of
protein folding.

The paper is structured as follows. In Sec. II we extend
the PHB model to the cases where the spherical interacting
particles have different nature (one composite the other ei-
ther hydrophobic or hydrophilic) in addition to being of dif-
ferent radii. In Sec. Il we present a modified version of our
NMPF model based on the first passage time analysis in the
framework of a ternary nucleation theory. The modified
NMPF model will explicitly implement the effect of water-
water hydrogen bond network by means of the PHB model.
The numerical results of the application of the modified
NMPF model to the folding of two model proteins are pre-
sented in Sec. IV. The results are discussed and conclusions
are summarized in Sec. V.

II. PROBABILISTIC MODEL FOR THE EFFECT OF
WATER-WATER HYDROGEN BONDING ON
THE INTERACTION OF SOLUTE PARTICLES

Let us consider two solute particles (1 and 2) of spherical
shape in water. The radii of the particles will be denoted by
R and R’ and the distance between them (i.e., between their
centers) by r (Fig. 1). The radii of the particles are deter-
mined by the locus of the outermost molecules that constitute
them. If the smaller solute consists of a single molecule, its
radius R’ is equal to zero. (This case would represent a
single residue in the unfolded part of the protein.) The char-
acteristic distance of pairwise interactions between mol-
ecules constituting particles R and R’ will be denoted by 7.

In order to make the model applicable to the problem of
protein folding, we will consider the particle R to have a
composite hydrophobic-hydrophilic character so that its sur-
face is covered with both hydrophobic and hydrophilic sites
uniformly distributed over the whole surface. The smaller
particle R" will be either completely hydrophobic or com-
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FIG. 2. A schematic representation of a water molecule in the
first hydration shell (1HS) of the planar substrate surface (shadowed
area). The lower and upper boundaries of the 1HS are marked as the
planes L1 and U1 and shown as long-dashed lines. The molecule,
shown as a disk S, is at the distance ¢ from the lower boundary
(closest to the hydrophobic surface) of 1HS. The four hb arms of
the molecule are shown as short-dashed lines with the empty circles
as the arm tips. Arms 1 and 2 are in the plane of the figure, whereas
arms 3 and 4 are located out of the figure plane (one of them under
it, the other above it). The angle between any two hb arms is a. The
angle O is the angle formed between the hb arm and its tangential
projection (parallel to the lower boundary of the 1HS). In this fig-
ure, the origin of the Cartesian coordinate system lies at the hydro-
phobic surface with the z axis being normal thereto. It is assumed
that —7/2=0 = 7/2 with ® <0 if the z coordinate of the hb-arm
tip is greater than (7+7,)/2+& and ©>0, otherwise. The large
dashed circle represents a water molecule, while the smaller dashed
semicircles represent the substrate molecules.

pletely hydrophilic. A water molecule is capable of forming a
hydrogen bond with a hydrophilic site of the surface but not
with a hydrophobic one. The probabilities w;, and w, that a
selected water molecule, adjacent to the particle R, will be in
contact with hydrophobic or hydrophilic sites, respectively,
are given by

Ap A
Wy = A s ;= A s (1)
where A, and A; are the total areas covered by hydrophobic
and hydrophilic sites, respectively, and A=A, +A; is the total
surface area of the solute. Clearly, w,+w;=1.

The location of a water molecule will be determined by
the location of its center. The length of a water-water hydro-
gen bond (i.e., the distance between the centers of two
bonded water molecules) will be denoted by 7,. Water mol-
ecules located in the layer of thickness %nw at distances to
the particle surface from %(7]+ 7,) to %(7]+ 7))+ % 7, Will be
considered to belong to the first hydration shell (hereafter
referred to as 1HS; see Figs. 1 and 2). The second hydration
shell (hereafter referred to as 2HS) of thickness 7,, is formed
by water molecules at distances to the particle surface from
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%(7]+ ) + % 7, 1o %(77+ 7))+ % 7,.- Hydrogen bonding being
short ranged, the other layers are not affected by the presence
of the particle surface.

Clearly, the properties of a hydrogen bond between a wa-
ter molecule and a hydrophilic site on the solute may depend
on the nature of the site. In a rough approximation, however,
its length will be considered to be the same for all hydro-
philic sites and equal to 7. The characteristic length of pair-
wise interactions between a water molecule and that of the
hydrophobic particle will be assumed to be equal to %(7)
+77,)-

A water molecule itself is modeled to have four arms each
capable of forming a single hydrogen bond. The configura-
tion of the four hb arms is completely symmetric with the
angle between any of them equal to @=109.47°. This tetra-
hedral configuration is assumed to be rigid (independent of
whether the water molecule is located in the bulk or in the
IHS). Each hb arm can adopt a continuum of orientations
subject to the constraint of tetrahedral rigidity. A water mol-
ecule forms a hydrogen bond with another molecule when
the tip of any hb arm of the first molecule exactly coincides
with the second one. The length of an hb arm is thus equal to
the length of a hydrogen bond, 7,

The water-water hydrogen bonds are treated along the
lines of the Miiller-Lee-Graziano (MLG) model [28,29].
Some of the hb arms of water molecules in the 1HS cannot
form bonds because of the proximity to the hydrophobic re-
gions of the solute. The bonds that such molecules do form
(hereafter referred to as “boundary hydrogen bonds”) can be
somewhat stronger than the bulk ones [25,29], although such
an enhancement is still a subject of discussion (see, e.g., Ref.
[27] and references therein). However, some 1HS water mol-
ecules can form hydrogen bonds with the hydrophilic sites of
the particle. The hydrogen bonds of such molecules are not
altered compared to the bulk water bonds. Nevertheless,
adopting a probabilistic approach one can consider the whole
network of hydrogen bonds involving all 1HS molecules as a
BHB network. A water-water hydrogen bond is enhanced
(compared to its bulk value) if at least one of the two water
molecules belongs to the 1HS and it does not form a hydro-
gen bond with the surface of the solute. The probability of
the latter is w,, while the probability that a IHS water mol-
ecule forms a hydrogen bond with the solute is w;. Therefore,
one can assume that the properties of such a composite hy-
drogen bond network involving 1HS molecules can be ob-
tained by averaging the properties of the corresponding net-
works for purely hydrophobic and purely hydrophilic
particles with weights w, and w,, respectively.

To some extent, our model for water-water hydrogen
bonding is a selective combination of a three-dimensional
analog of the Mercedes-Benz (MB) water model [25] with
the MLG model [28,29]. In the original MB model [25]
(which is two dimensional) the water molecules are modeled
as Lennard-Jones (LJ) disks in a donor-acceptor approxima-
tion, with three hydrogen bonding arms (whereof the com-
pletely symmetric configuration resembles the Mercedes-
Benz logo, hence the name of the model). The interaction
potential between two water molecules is the sum of two
terms, with one representing the LJ interaction of disks and
the other representing their hydrogen bonding ability. Al-
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though the latter is considered to be continuous, a hydrogen
bond is modeled to be optimal at a specified distance and a
relative orientation of the two molecules involved: if at this
distance one hb-forming arm of one molecule aligns itself
with a hb arm of the other molecule, then the hydrogen bond
energy has its minimum value. Deviations from this lowest-
energy hydrogen bond configuration (in distance and mutual
orientation) are assumed to have a Gaussian distribution with
a single width parameter for all degrees of freedom. Al-
though the MB model allows continuous variations of the
separation and orientation of the water molecules (disks), it
is also consistent with the concept of bimodal character of
the energetics of hydrogen bonds in the MLG model [28,29].
The discrete three-dimensional model presented in Refs.
[23,24] can be regarded as a particular case of a three-
dimensional version of the hydrogen bonding feature of the
MB model where the Gaussian distribution would be infi-
nitely narrow. However, the analytical treatment that we pur-
sued in our model would be much more difficult to carry out
if we considered the hydrogen bonding ability of water mol-
ecules to have a continuous (with respect to the separation
and mutual orientation of molecules involved) character.

A. Networks of water-water hydrogen bonds around
solutes

Let us now examine how the BHB network affects the
pairwise interaction potential @ between two particles.
Clearly, this effect can be neglected if the second hydration
layers (2HS) around the two solutes do not overlap. How-
ever, if the two particles, R and R’, are sufficiently close to
each other, they have to share some parts of their BHB net-
works. The overlap of the 2HS of one particle with the 2HS
of the other leads to a decrease in the total number of 2HS
molecules but does not affect the total number of 1HS mol-
ecules. The latter decreases only as a result of the overlap of
the 1HSs of the two particles. The overlap of the BHB net-
works of the two particles thus causes their mutual disrup-
tion.

If the distance r between the two particles (i.e., between
their centers) is greater than F=R+R'+ n+4m,, there is no
overlapping of the first two hydration shells of the two par-
ticles so that they do not share their BHB networks and there
is no contribution to the potential ®=®(r). However, when
the particles are sufficiently close to each other, so that r
<7, they share some parts of their first two hydration shells.
Thus, with decreasing r (at r<7), the total volume of the first
two hydration shells decreases, which leads to the decrease
in the total number of molecules in these shells. This, in turn,
results in a decrease in the total number of boundary hydro-
gen bonds in the first two hydration shells of the two par-
ticles, hereafter denoted by N,=N,(r). The total number of
BHBs in the first two hydration shells of the two solutes at a
distance r between them will be denoted by v,=v/(r). A
decrease in N, results in a decrease in v, (both occurring
because of the overlapping of the first two hydration shells of
the two particles): the corresponding quantities are given by
N;’OC EN;OC(r):NS(OO)—Ny(r) and V;w = VSOC(’,): Vs(oc)_ Vs(r)s
respectively. Clearly, v, (r)=0 and N} (r)=0 for r=7, while
V2(r)>0 and N.°(r) >0 for r<r.
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The N;” molecules which left the 1HS and 2HS of the two
solutes pass into the bulk water where they can form new
hydrogen bonds with the energy €,<<0 per bond. The aver-
age number of bonds per molecule of bulk water is denoted
by n,. The total energy ®, of the newly formed bonds is a
function of r (because so is N.°): @, =D, (r)=€,n,N. (r).
Denoting the number density of water molecules in the 1HS
and 2HS by p,,, one can rewrite @, as

D(r) = empp,,V, (1), (2)

where V,(r) is the volume of the region resulting from the
overlap of the first two hydration shells of the two solutes
(note that p,, may differ from the bulk water density piv; see
Sec. IV). The explicit expression for V,, depends on whether
the smaller particle R’ is hydrophobic or hydrophilic (see
Appendix A).

On the other hand, the same N;w molecules were involved
in . BHBs before leaving the first two hydration shells of
particles R and R’. Denoting the energy of a single BHB by
€,<0, one can write the total energy of these v~ bonds as
q)s = q)s(r) = Engw(’”)-

The contribution to the interaction potential between sol-
utes R and R’, arising from the disruption of the BHB net-
works in their vicinities because of their overlap, is given as

=0, -, A3)

This contribution is a function of r (because so are ®, and
®,) and w, (because so is D)), i.e., "°= P"(r, w,).

The evaluation of ®; is complicated by the composite
character of the solute particle R because the water mol-
ecules belonging to its 1HS can form hydrogen bonds with
the hydrophilic sites thereupon. According to the adopted
model, one water molecule belonging to the 1HS can form
only a single hydrogen bond with the particle surface; this
happens when one of its hb arms is almost perpendicular to
the surface and its tip pointing to a hydrophilic site of the
latter (the probability of this event is w;). In such a situation,
the water molecule forms the same number of hydrogen
bonds as in the bulk (n,) with the same (bulk) energy per
bond (e,). Otherwise, the number n, of bonds per |HS water
molecule will be smaller, n,<n,, but the bonds may be en-
ergetically enhanced (with the energy per bond €,<e€,)
[25-27].

Explicit expressions for @, can be obtained in various
ways differing in their accuracy. For the solvent-mediated
interaction of two infinitely large parallel plates of composite
nature [24], we used a linear interpolation of ®; as a function
of wy. At w,=0 the function @ (w,) reduced to ®,, whereas
at w,=1 the function ® (w,) provided ®,, the total energy of
hydrogen bonds in which the N;” molecules would have
been involved if the surface of both interacting plates had
been completely hydrophobic. For the solvent-mediated in-
teraction between two spherical solutes (either both compos-
ite or one composite the other hydrophobic or hydrophilic),
in this (linear) approximation we would have @ (w,)
=w,®,+(1 - w,)P,, where P, is given by Eq. (2) and the
energy ®, is given by the expression
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(I)e = éene{fl,Z(l - X)[Va(r) - Vm(r)] - 0~5/\/Vm(r)}v (4)

with n, being the average number of hydrogen bonds formed
by a 1HS water molecule; €, being the energy per such a
bond; y=0.4 being the probability that a hydrogen bond,
formed by a selected 1HS molecule, is a bond of type 1
(when both water molecules involved belong to the 1HS; see
Ref. [23]); V,,(r) being the overlap volume of the 1HSs of
the two solutes as a function of r (see Appendix A); and
coefficient f| , relating the average density of BHBs of type
2 (between molecules of the 1HS and 2HS) in the overlap
region of 2HS’s of the two solutes to the number density of
water molecules in the 1HS (see Ref. [23] for details).
Hereafter, we will adopt another more accurate approxi-
mation for @ . This energy as a function of r can be found as

Dy(r) = €17 (r), (5)

where €, is the average energy per each hydrogen bond
formed by a water molecule in the 1HSs of solutes R and R’.
Let us denote the average energy of such a bond in the 1HS
of composite solute R by €;. On the other hand, the energy of
a bond formed by a molecule in the 1HS of a hydrophobic
solute is €,, while the water molecules around the hydro-
philic solute do not form BHBs at all (all hydrogen bonds
there are the same as in bulk). Therefore, if a water molecule
belongs to the overlap region of the 1HSs of the two par-
ticles, there is some uncertainty regarding the energy of
water-water bonds that such a molecule forms in the case
where the composite solute R interacts with a hydrophobic
solute R’: this energy is either €; or €,, with equal probabili-
ties. Adopting a most simple approach to get around this
uncertainty, one can assume that e, is the arithmetic average
of BHBs in the 1HSs of particles R and R’ separately,

1
—(e+¢€,) (for a hydrophobic solute R')
63: 2 (6)

€ (for a hydrophilic solute R').

s

We can then apply the linear interpolation with respect to w,,
(as described above) to € as follows:

Egzwae'i'(l —wb)Eb. (7)

The quantity v,”, a decrease in the total number of BHBs
in the first two hydration shells at a distance r between sol-
utes, can be determined if one knows the average number n;
of hydrogen bonds formed by one molecule of water in the
overlap region of the 1HSs of particles R and R’. If the latter
is hydrophobic, then n, can be estimated to be the arithmetic
mean of n, and n§, with n{ being the average number of such
bonds in the 1HS of the composite particle R. If the solute R’
is hydrophilic, then n, simply equals nj. Thus,

1

—(n;+n,) (for a hydrophobic solute R')
n=12 )

n (for a hydrophilic solute R’).
Again, an explicit expression for v/ will depend whether the
solute R’ is hydrophobic or hydrophilic (see Appendix A).

In order to determine nj, consider a water molecule m{ in

the 1HS of the composite particle R. By analogy with Eq.
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(11) of Ref. [23] and Eq. (13) of Ref. [24], one can represent
n; as the sum

ng=pi+pa) P31y + PaGa) 9)

where p, is the probability that one of the hb arms of mol-
ecule m{ forms a hydrogen bond, p,(;) is the probability that
a second hb arm forms a hydrogen bond subject to the re-
striction that one of the hb arms has already formed the
bond, p3 y is the probability that a third hb arm forms a
hydrogen bond subject to the restriction that two of the hb
arms have already formed bonds, and py(; 5 1) is the probabil-
ity that the fourth hb arm forms a bond subject to the restric-
tion that three of the hb arms have already formed bonds.
If the solute surface were purely hydrophilic, then these
probabilities would be by, b%, bf, and b‘l‘, respectively, where
b is the probability that a bulk water molecule forms a
hydrogen bond. If the solute surface were completely
hydrophobic, then these probabilities would be equal to
S1, Sa1)» S32.1)» and sg354), respectively, related to
by by si=kiby, sy1)=koby, 53(2,1)=k3b?’ 54(3,2,1)=k4b?’
with the coefficients k;=0.521 694, k,=0.433 148, kj
=0.304 122, k,=0.006 433 (see Refs. [23,24]). Taking into
account the definition of the probabilities sy, s3(;), $3(2.1), and
54(32,1)» one can find their w, dependence by means of a
linear interpolation between their values at w,=0 and w,
=1, which provides

p1=K(wp)by, pyyy= Kx(wp)bt,  pag.r) = Ks(wp)by,

Pa3o1) = Ky(wy)bT, (10)
with the coefficients

Ki(wb)=l—wb+wbk,- (i=1,2,3,4). (11)

The probability b; is unambiguously determined by the ther-
modynamic state of the bulk water (temperature, pressure,
etc.) as the solution of the equation n,=b,+bj+b}+b] satis-
fying the constraint 0 <<b; <1 (the bulk quantity n,, whereof
the dependence on thermodynamic conditions is well enough
documented, is assumed to be given).

Substituting Egs. (2) and (5) into Eq. (3) and taking into
account Egs. (6)—(11) (as well as those in Appendix A), one
can calculate the solvent-mediated contribution to the inter-
action between composite and hydrophobic or hydrophilic
particles, contribution arising because of the overlap of the
boundary hydrogen bond networks around the two particles.

B. Case of protein folding via nucleation

It is clear that in order to apply the probabilistic approach
to the nucleation mechanism of protein folding, the role of
the composite particle should be attributed to the cluster of
native residues (i.e., with correct tertiary contacts as they
exist in the native protein). The radius of this cluster evolves
(increases) as folding advances. On the other hand, the role
of the smaller particle is played by the residues of the protein
unfolded part. Their radius is thus constant and equal to
R'=0. In terms of hydrogen-bonding ability, both hydropho-
bic and neutral protein residues can be considered as “hydro-
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FIG. 3. The boundary hydrogen bond networks contribution ¢
to the total interaction potential between two spherical solutes, one
of which is a composite particle of radius R=57,, (and of hydro-
phobic surface fraction w,=0.4) and the other is either a hydropho-
bic (thick dashed curve) or hydrophilic (thin continuous curve) par-
ticle of radius R’ =0 (which corresponds to a single protein residue).
The potential is plotted as ¢"/|®’| vs r/7,, where ® =e,n,p, 7,
is twice the energy of water-water hydrogen bonds in the volume
nfv of bulk water. The leftmost dotted-dashed vertical line indicates
the location of ry, whereas the middle and rightmost lines indicate
the location of ry for hydrophilic and hydrophobic beads, respec-
tively. The solvent (water) is under such conditions that n;,=3.65.

phobic” (i.e., unable to form hydrogen bonds with water
molecules).

The water-water hydrogen bond contribution ¢™ to the
interactions of hydrophobic and hydrophilic residues with a
protein folded cluster of radius R=517,, is presented in Fig. 3.
The composition of the cluster was taken to be that of a
bovine pancreatic ribonuclease (BPR), whereof the nucle-
ation mechanism of folding we previously modeled [14]. The
surface of the protein cluster was assumed to have the same
composition as the whole protein so that the fraction of hy-
drophobic sites thereupon was taken to be w,=(N,
+N,)/(N,+N;+N,), where N;,=40, N;=81, and N,,=3 are the
numbers of hydrophobic, hydrophilic, neutral residues in
BPR. The protein residues themselves are assumed to have
the characteristic length of pairwise interaction 7=1.37,.
Water was assumed to be under such thermodynamic condi-
tions that n,=3.65. Quantitatively, the energetic enhance-
ment of boundary hydrogen bonds (in the 1HS of a hydro-
phobic surface) can be characterized by the ratio e,/€,
where €,<0 is the energy of a hydrogen bond involving at
least one 1HS molecule and ¢€,<0 is the energy of a bond
between two bulk molecules. In the PHB formalism [23,24],
the ratio €,/ ¢, is allowed to take on any positive value, i.e.,
0<e,/ €,<o, although it is expected to be close to unity. As
suggested in Ref. [29], the enhancement ratio €,/€, was
taken to be 1.1.

The contribution qﬁ?b to the “cluster-hydrophilic residue”
interactions in Fig. 3 is presented by the upper (thin solid
curve), whereas the contribution ¢2b to the ‘“cluster-
hydrophobic residue” interactions is plotted as a thick dashed
(lower) curve. The potentials are plotted as ¢™/|D’| vs r/ 7,,,
where @' =¢,n,p,, nfv is twice the energy of water-water hy-
drogen bonds in the volume nfv of bulk water. The effect of
BHB networks around the cluster and residues on “cluster-
residue” interactions is clearly much (by an order of magni-

folded part
of the protein

R

composite cluster

FIG. 4. A piece of a heteropolymer chain around a spherical
cluster consisting of v, hydrophobic, v, hydrophilic, and v, neutral
beads. Among the hydrophilic beads themselves 1} are uncharged,
v; are negatively charged, and v] are positively charged. Bead 1 is
in the plane of the figure, whereas other beads may all lie in differ-
ent planes. All bond angles are equal to B, and their lengths are
equal to 7. The radius of the cluster is R and the distance from the
selected bead 1 to the cluster center is r

tude) stronger for the hydrophobic residues than for the hy-
drophilic ones. The range of ¢"(r) for the former is twice as
large as that for the latter.

III. MODIFIED MODEL FOR THE NUCLEATION
MECHANISM OF PROTEIN FOLDING

A. Ternary heteropolymer as a protein model

The NMPF model [13,14] considered a protein polypep-
tide chain as a heteropolymer that consists of N connected
beads which can be thought of as representing the « carbons
of various amino acids (see Fig. 4). The heteropolymer con-
sists of hydrophobic (b), hydrophilic (), and neutral (n)
beads. Besides, some (not all) hydrophilic beads are ioniz-
able (some negatively and some positively), because 5 out of
11 hydrophilic amino acids in real proteins are ionizable.
Two adjacent beads are connected by a covalent bond of a
fixed length 7. This model (and its variants) has been shown
[6,10,12] to be able to capture the essential characteristics of
protein folding even though it contains only some of the
features of a real polypeptide chain.

The total energy of the heteropolymer (polypeptide chain)
can contain three contributions of different types. First, the
contribution from repulsive and attractive forces between
pairs of nonadjacent beads (these can be, e.g., of Lennard-
Jones or other types) that are at least three links apart (the
interaction between nearest neighbors is taken into account
by the link of constant length between them, while the inter-
actions between next-nearest neighbors are taken into ac-
count by the rigidity of the angle between neighboring links).
Next is a contribution from the harmonic forces due to the
oscillations of the bond angles. Finally, a contribution from
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the dihedral angle potential due to the rotation around the
peptide bonds.

The bond angle forces are believed [6,10] to play a minor
role in the protein folding and unfolding; hence, all bond
angles can be set to be equal to B,. It was shown [6,10] by
molecular dynamics (MD) simulations, which employed low
friction Langevin dynamics, that a proper balance between
the remaining two contributions to the total energy of the
heteropolymer ensures that the heteropolymer folds into a
well-defined B-barrel structure. It was also found [6,10] that
the balance between the dihedral angle potential, which tends
to stretch the molecule into a state with all bonds in a
transconfiguration, and the attractive hydrophobic potential
is crucial to induce folding into a SB-barrel-like structure upon
cooling. If attractive forces are excessively dominant they
make the heteropolymer fold into a globulelike structure,
while an overwhelming dihedral angle potential forces the
chain to remain in an elongated state (even at low tempera-
tures) with bonds mainly in the transconfiguration.

Protein folding via nucleation is modeled to occur as the
formation and evolution of a cluster of native residues within
the protein. The cluster is assumed to have a spherical shape
all the time. If the ionizability of (some) hydrophilic residues
is taken into account, a cluster of native residues, involved in
the nucleation mechanism of protein folding, should be char-
acterized by five independent variables and it would be nec-
essary to use the formalism of a five-component nucleation.
Such a model would require extremely lengthy numerical
calculations when applied to real proteins. To avoid this dif-
ficulty, one can assume that, as the protein folds via nucle-
ation, the “hydrophilic” mole fractions of positive and nega-
tive residues in the cluster remain equal to those in the whole
protein. Under such assumptions, the cluster can be charac-
terized by only three independent variables and a model for
the nucleation mechanism of protein folding can be again
developed in terms of a ternary nucleation theory. In the
framework of a three-component heteropolymer representa-
tion, the protein folding process can be regarded as a ternary
phase transition with the ternary cluster (of native residues)
within a ternary mother phase (unfolded part of the protein).

B. Hydrogen bond contribution to the potential field around
the folded part of a protein

In our NMPF model we considered the folded part of the
protein to be a cluster of spherical shape immersed in a ter-
nary fluid mixture (whereof the role is played by the un-
folded part of the protein). Let us denote the number of mol-
ecules (beads) of component i in such a ternary spherical
cluster by v; (i=b,l,n). The radius of the cluster will be
denoted by R implying that it plays the role of a composite
solute particle discussed above. The total number of beads of
component i in the protein is denoted by N;. In the original
applications of the first passage time analysis to nucleation
[30-32] a molecule of component i (in our model i=b,/,n)
located in the surface layer of the cluster was considered to
perform a thermal chaotic motion in a spherically symmetric
potential well ¢,;(r) resulting from the pair interactions (say,
of LJ type) of this molecule with those in the cluster [r is the
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distance between the center of the cluster and the molecule;
here, it is the distance between the centers of the cluster and
selected bead (see bead 1 in Fig. 4)].

The total potential ;(r) for a residue of type i around the
cluster previously (i.e., in the original version of the NMPF
model) had three different constituents, ¢,(r), &f(r), and ¢,
which represented the effective LJ and electrostatic (for pair-
wise interactions of the selected residue with those in the
cluster), average dihedral angle, and confining (representing
the external boundary of the volume available to the un-
folded residues) potentials, respectively,

G(r) = d(r) + (1) + FXr)  (i=b.Ln).  (12)

Complete details concerning the physical nature and calcula-
tion of ¢,(r), J)?(r), and ¢, are given in Refs. [13,14].

In the original NMPF model hydrogen bonding was taken
into account just indirectly via the diffusion coefficients of
amino-acid residues. We will hereafter improve that model
by combining it with the above-presented BHB model for the
solvent-mediated interactions of solute particles. The im-
provement consists of augmenting the overall potential field
around the cluster, i;(r), by an additional term qb?b(r) arising
because of the disruption of the BHB networks around that
residue and the cluster. As a result, instead of Eq. (12) the
overall potential #;(r) will be now

Gr) = d(r) + bep(r) + BXAr) + (1) (i=b,Ln),
(13)

where ¢"(r) is given by Eq. (3) and auxiliary equations in
Sec. IT with R'=0 and R=[3v(v,+ v+ v,)/4m]">.

As with Eq. (12) (representing the original NMPF model
[13,14]), the combination of potentials in Eq. (13) gives rise
to a double potential well around the cluster with a barrier
between the two wells. Figure 5 presents typical shapes of

the constituents ¢;(r) and (}f(r) as functions of the distance
from the cluster center, as well as the overall potential well
i(r) itself (for details regarding the numerical calculations,
see Refs. [13,14]). The contribution ¢,(r), arising from the
pairwise interactions, has a form reminiscent of the underly-
ing Lennard-Jones potential, while the contribution from the
average dihedral potential has a rather remarkable behavior.
Indeed, starting with a maximum value at the cluster surface,
it monotonically decreases with increasing r until it becomes
constant for large enough values of r. Thus, except very short
distances from the cluster surface where ¢;(r) sharply de-
creases from o to its global minimum, the potential #;(r) is
shaped by two competing terms, ¢;(r) and (?)f(r), which in-
crease and decrease, respectively, with increasing r, and by
the confining potential ¢,. The double-well shape of the
overall potential ;(r) is of crucial importance to the NMPF
model (both original and modified) because it allows one to
use the mean first passage time analysis [33,34] for the de-
termination of the rates of both absorption and emission of
beads by the cluster.

Once the rates of emission and absorption are found as
functions of cluster independent variables, one can develop a
self-consistent kinetic theory for the nucleation mechanism
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FIG. 5. (a) The potentials ¢b(r)+¢l;b (lower dashed curve),
¢,(r) (upper dashed curve), fbf(r) (dotted-dashed curve), and ,(r)
(solid curve), for a hydrophobic bead around a cluster with v,
=23, y=41, v;=45, 11=65, v,=2 at pH=7.3 [¢,(r), &),
Deps @™, and ,(r) are the effective pairwise, average dihedral
angle, confining, solvent-mediated (hydrogen bond), and total po-
tentials for a hydrophobic bead around the cluster of folded pro-
tein]. The confining potential is shown as a solid vertical line at
rep=18.57, whereas the hydrogen bond contribution is plotted
separately in Fig. 3. All the potentials are given in units of €, the
energy parameter in the Lennard-Jones potential of pairwise inter-
actions between two hydrophobic beads. (b) shows the curve i,(r)
alone for the better visualization of its double-well shape.

of protein folding and evaluate the folding time and its tem-
perature dependence. The time necessary for the protein to
fold is evaluated as the sum of the times necessary for the
appearance of the first nucleus and the time necessary for the
nucleus to grow to the maximum size of the folded protein in
the native state (a brief description of the whole procedure is
presented in Appendix B, while the reader is referred to Refs.
[13,14] for details).

It is worth emphasizing that the double-well character of
#i(r) is not related to the two-state (native-unfolded) nature
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of proteins. In the NMPF model, the latter is reflected in the
function G(v,, v;,v,) (see Appendix B), which is the analog
of the free energy of formation of a cluster v, v;, v, and has
the shape of a hyperbolic paraboloid (in a four-dimensional
space of variables v, v;,v,,G). Its path of the steepest de-
scent has at least one maximum at the point with the coordi-
nates Vue, Vier Ve, G(Vpe» Vs V) corresponding to the critical
cluster. The initial point (v,=0, v,=0, v,=0) of that path
corresponds to a completely unfolded protein and its final
point (v,=N,,, v=N;, v,=N,) to a completely folded (na-
tive) structure. The height of the barrier between the un-
folded and folded states, provided by G.=G(vy., v, V,.),
plays a crucial role in the kinetics of protein folding and
determines the time of this process.

The path of the steepest descent of G(v,,v;,v,) can have
additional local maxima that can lie on either side of the
global maximum. (Such a situation would arise if the rates of
emission and absorption of residues by a cluster were non-
monotonic functions of cluster variables. This could be pos-
sible if the diffusion coefficients of protein residues in the
inner potential well (ipw) and outer potential well (opw)
were dependent on cluster variables.) The local minima
would then correspond to intermediate (partially folded)
metastable states of the protein [1,4,5]. The kinetics of the
transition from the initial (unfolded) state into the first inter-
mediate one, transitions between intermediate states, and
transition from the last one into the final (completely folded
native) state are governed mostly by the heights of the bar-
riers between them. The latter [as well as the whole shape of
the function G(v,,v;,v,)] are determined by the emission
and absorption rates as functions of the variables v, v, v,
(see Appendix B).

Our models of a protein and its folding have so far always
provided a single maximum on the path of the steepest de-
scent of height from 26kzT to 33kzT (kz being the Boltz-
mann constant and T being the temperature). This is a clear
indication of a two-state nature of the model proteins consid-
ered, at least under external conditions at which they were
studied. In principle, the character of the protein can change
if under different external conditions the height of the barrier
can decrease or increase. If it decreases down to a few kz1"’s
(or disappears at all), the protein would fold in a virtually (or
purely) barrierless way, which is characteristic of fast-folding
proteins [35]. On the other hand, this (i.e., virtually or purely
barrierless folding) can be a result of some particular values
for the set of parameters in the model interaction potentials.
One can also expect that under favorable circumstances the
existence of intermediate (metastable) states of a protein on a
particular folding trajectory can significantly decrease pro-
tein folding time compared to the time on another folding
trajectory (of the same protein) with just one global maxi-
mum (assuming that its height is comparable to that of the
global maximum of the path with intermediate states). This
can take place if all intermediate barriers between previous
and next local minima are significantly smaller than the
height of the global barrier.

IV. NUMERICAL EVALUATIONS

As an illustration of the above theory, we have applied it
to the folding of two model proteins, composed of 124 and
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2500 amino acid residues. The first roughly mimics a BPR
and was previously studied in Refs. [14] in the framework of
the original NMPF model. According to the classification of
Ref. [36], BPR consists of N,=40 hydrophobic, N;=81 hy-
drophilic, and N,=3 neutral amino acids (with the total of
N=124). We have considered a model heteropolymer con-
sisting of the same numbers of hydrophobic, hydrophilic,
and neutral beads: N,=40 hydrophobic, N;=81 hydrophilic,
and N, =3 neutral ones. Out of 81 hydrophilic beads, only 28

are ionizable, of which 1\71" =10 can be charged negatively

and ]\77 =18 positively. The presence of other solute mol-
ecules and ionized bead counterions was not taken into ac-
count explicitly. The second model protein was chosen as a
representative of large proteins. As in Ref. [13], it was a
heteropolymer consisting of a total of 2500 residues, with the
same mole fractions of hydrophobic, hydrophilic, neutral,
and positively and negatively ionizable residues as for a
short protein, that is, N,=807, N,=1633, N,=60, and IV}L
=363 and N; =202 (with a total of 565 ionizable residues).
We intentionally modeled such a large protein (relatively rare
in nature) to demonstrate that our method provides reason-
able folding times on a reasonable time scale even for the
largest proteins. Straightforward Monte Carlo (MC) or MD
simulations of folding and unfolding behavior of such large
proteins are currently impossible.

The actual numbers N, and N, of negatively and posi-
tively ionized residues in the protein can be smaller than 1\71‘
and 1\77 , respectively, with the average dissociation coeffi-
cients k"=N;/ ﬁ,‘ and k*=N;/ ﬁ}“ depending on the pH of the
surrounding medium and on the average dissociation coeffi-
cients K, and K, of the acidic and basic residues in the pro-
tein. In the BPR, there are five residues of aspartic acid (asp),
five of glutamic acid (glu), ten of lysine (lys), four of argin-
ine (arg), and four of histidine (his) so that K, and K, in BPR
were taken to be K,=(5K,,+5K,,)/(5+5) and K,
=(10K;y+4K ;o +4K},;5) [ (10+4+4), where the dissociation’s
constants K, Ky, Kjyss Kypgo and K are available in the
literature [36,37] (although they exhibit some scatters). At
any given pH, the effective dissociation coefficients k= and
k* are completely determined by pK,=-log,,K,, pK,
=—log,y K,, respectively, as  k =1/(1+10"7H*Ks),
k*=1/(1+10"147H+Kp) We have carried out numerical cal-
culations for pH=7.3 (roughly that of living cells) at which
N;/N;=0.69, as well as for pH=6.3 at which N;/N;
=0.38 and for pH=8.3 at which N;/N; =1.59. Note that the
standard values [36,37] of the dissociation constants of ion-
izable residues are suitable for modeling unfolded states
only. However, the corrections to K, and K, for the native
state can be neglected because they affect only the electro-
static contributions to the total potential field around the
cluster ¢;(r) which themselves constitute small corrections to
the other terms in i;(r).

The contribution from the BHB networks to the overall
potential was calculated as described in Sec. II with R'=0
and R=[3v(v,+v,+v,)/47]"3. The electrostatic interactions
between a selected charge ¢ at r and the elementary charge
at point r' (within the cluster) is given in the Debye-Hiickel
approximation for the screened Coulomb potential by
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wa (e’ —r|) = = eI, (14)
er —

where k is the electrostatic constant (1 in cgs units and
1/4ms, in SI units, with £,=8.854X 10712 F/m being the
dielectric permittivity of vacuum), & is the relative permittiv-
ity of the medium wherein the protein is present, and « is the
inverse Debye length (in our numerical calculations 1/«
=0.3 nm which roughly corresponds to an electrolyte con-
centration of 0.3 M, typical for living cells [36]). The total
electrostatic potential u-(r) of a residue carrying a charge
g+= * e around the cluster (at a distance r from its center)
was calculated as

w(r) = f dr’ py(r'w(|r" — ),
1%

where r is the coordinate of the selected bead with a charge
g+ and the “number density” of charged residues at point r’
within the cluster is assumed to be uniform, i.e., p,= p,(r')
=(v/—v;)/(4mwR3/3). The density p, can be negative, in
which case the total charge of the cluster is negative. The
integration in this equation has to be carried out over the
whole volume of the system, but the contribution from the
unfolded part is assumed to be small owing to the smaller
density. The nonelectrostatic interactions between any two
nonadjacent beads were modeled by Lennard-Jones (LJ) po-
tentials whereas the potential due to the dihedral angle § was
represented by the expression ¢s=ej(1+cos 8)+ey1
+cos 36), where €5 and €} are energy parameters which de-
pend on the nature and sequence of the four beads involved
in the dihedral angle &. The parameters of the LJ and elec-
trostatic potentials were chosen as in Ref. [14], but the pa-
rameters of the dihedral angle potential needed a significant
adjustment as explained below. The typical total densities p;
and p, of protein residues in the folded and unfolded (but
compact) states and the diffusion coefficients of residues D'V
and D°" in the ipw and opw were taken the same as in Ref.
[14]: p7’=0.57, p,=02p; D™p=Dp,, D™=D} (i
=b,l,n), D°=D™ (i=b,l,n), with D'V assumed to vary be-
tween 107° and 10~® cm?/s (because of the lack of reliable
data on the diffusion coefficient of a residue in a protein
chain)

For hydrophobic, neutral, and uncharged hydrophilic
beads the potential fields around the cluster are not affected
by the charged residues in the cluster. For negatively and
positively charged hydrophilic residues, the overall poten-
tials around the cluster have the electrostatic contributions,
u_(r) and u,(r), respectively. Included in the effective pair-
wise potential ¢(r) (j=+,-) in Eqgs. (12) and (13), they are
equal to each other in absolute values but have opposite
signs, i.e., u(r)=u,(r)=—u_(r), so that ¢.(r)=¢,(r) £ u(r),
where ¢,(r) is the effective pairwise potential of uncharged
hydrophilic beads (due exclusively to LJ interactions). As
previously [14], the effective Lennard-Jones and average di-
hedral angle potentials have been considered to be indepen-
dent of whether a hydrophilic residue is positively or nega-
tively charged or noncharged.
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Figure 5 presents typical shapes of the overall potential
well ¢(r) and its different constituents as functions of dis-
tance from the cluster center. All the potentials are given in
units of the energy parameter €, of the Lennard-Jones po-
tential of pairwise ‘“hydrophobic-bead—hydrophobic-bead”
interactions. The curves shown are for a hydrophobic bead,
but the curves for neutral and hydrophilic (both uncharged
and positively and negatively charged) beads look very simi-
lar to those in Fig. 5. The results shown are for pH=7.3 and
a cluster v,=23, /=41, v;=4.5, v/=6.5, v,=2 carrying
a total charge g,=+2e.

Note that the pH of the medium (surrounding the protein)
and the charge of the cluster do not affect the potentials (both
overall and its constituents) for hydrophobic, neutral, and
hydrophilic uncharged beads. The pairwise potential for hy-
drophilic charged residues, ¢,(r) (j=+,-), is sensitive to the
charge of the cluster because it contains the electrostatic con-
tribution *u(r) from the “charged-bead—charged-cluster” in-
teractions. For example, for a positively charged cluster
&,(r)+u_(r) < o, (r) < ,(r)+u,(r), ie., the potential well
(due to the well of the LJ potential) becomes shallower for
positively charged hydrophilic beads and deeper for nega-
tively charged ones as compared to uncharged ones [14].
However, the electrostatic contribution u(r) to ¢,(r) (j=+,
—) is much weaker (by an order of magnitude) than the LJ
contribution, i.e., |u(r)/ ¢,(r)| < 1. On the other hand, the en-
tire effective pairwise contribution to ¢; is much weaker than
the BHB networks contribution, i.e., [¢;(r)/ ¢l;b| < 1. There-
fore, the effective electrostatic potential u(r) affects the over-
all potential field i; very weakly. Nevertheless, this weak
effect results in the pH dependence of the protein folding
time because it is magnified by the formalism of the first
passage time analysis (involving the exponentials of the
overall potential ;).

As seen in Fig. 3, the BHB network contribution ¢hb is a
continuous negative function of r (its first derivative has fi-
nite discontinuities at some r=r; and r=r,>r;). However,
the slope of ¢" as a function of r is clearly discontinuous at
r=ri=R+(n+m,) and r=ry with ro=R+ n+27,, for hydro-
philic beads and ry=R+ n+47,, for hydrophobic ones. This
is an artifact of the model and arises because of the sharp
boundaries assumed for the 1HS and 2HS. When r decreases
from o to ry, the 1HS and 2HS of the particles are not af-
fected; hence, ¢"(r)=0 for r=r,. When r decreases from r,
to r;, 2HS and 1HS molecules are removed from the first two
hydration shells of the particle(s), which leads to the de-
crease in @™ from zero to its minimum value (of strongest
attraction) attained at r;. When r becomes smaller than ry,
virtually no water molecules can fit in between the particles
and the change in r practically does not lead to any change in
the solvent-mediated interaction of the particles which hence
remain constant (corresponding to the strongest interaction
between particles). As a result, the attractive force between
the particles is piecewise continuous with finite discontinui-
ties at r=r; and r=ry. (In Fig. 3, the location of r; is shown
by the leftmost dotted-dashed vertical line, whereas the
middle and rightmost lines indicate the location of r, for
hydrophilic and hydrophobic beads, respectively). Thus, ¢
represents an additional attraction between a cluster of native
residues of the protein and a residue in the protein unfolded
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part at distances between their centers in the range n<<r
<ry. Although this range is rather short, its strength is much
higher than that of the effective pairwise potential at not too
short distances between cluster and residue.

The effective pairwise potential ¢,(r) arising from el-
ementary pairwise interactions (LJ for hydrophobic, un-
charged hydrophilic, and neutral beads and LJ+electrostatic
for positively and negatively charged hydrophilic ones) has a
form reminiscent of the Lennard-Jones potential. Although
this contribution to () is much weaker than @g(r) and Zb
at r= 7, it tends to % as r—0 thus forming the inner (closer
to the cluster) boundary of the inner potential well. There-
fore, it cannot be neglected on the right-hand side of Eq. (13)
(likewise, one cannot neglect the confining potential that
forms the outer boundary of the outer potential well, al-
though it is zero everywhere at r=r,).

The average dihedral potential (assigned to a selected
bead) (_ﬁ,f(r) has a maximum value at the cluster surface and
decreases monotonically with increasing r until it becomes

constant for r=R+d, where d is the maximum [13,14] dis-
tance between beads 1 and 6 (or beads 1 and 7) which de-

pends on 7 and B,. Such a behavior of J),fs(r) can be inter-
preted as a consequence of the decrease in entropy (hence an
increase in the free energy) of the heteropolymer chain as the

selected bead 1 approaches the cluster surface for r<R+d
which, in turn, is due to a decrease in the configurational
space available to the neighboring beads (beads 2-7).

The overall potential ¢,(r) depends very much on the
parameters for the potential associated with a single dihedral
angle. Previously [13,14], their values were chosen so that
the overall potential field around a cluster had a double-well
shape. Using the same values for the dihedral angle potential
parameters in Eq. (13), corresponding to a modified (i.e.,
combined with the PHB model) NMPF model, would result
in a potential field that has a single-well shape. This, in turn,
would prevent us from applying the first passage time analy-
sis to determining the absorption rate W} of the cluster [see
Eq. (B3) in Appendix B]. Then, it remains rather unclear
how one can determine W, and eventually evaluate the pro-
tein folding time.

In order to avoid this difficulty and conserve the double-
well shape of the potential field around the cluster in the
modified NMPF model, it is necessary to properly adjust the
energy parameters in the dihedral angle potential. This ad-
justment must be carried out subject to a reasonable physical
criterion, such as—for instance—the requirement that the
predicted folding times must be in the range of experimen-
tally observed ones. To satisfy this requirement, we had to
increase the two energy parameters (which, for simplicity,
are taken to be equal to each other) in the dihedral angle
potential by a factor of 12 compared to their values used in
Refs. [14]. With such values, the potential field around the
cluster again has a double-well shape (see Fig. 5), although
significantly different from the original NMPF model (be-
cause of the BHB networks contribution): the inner well
(ipw) is separated by a potential barrier from the outer well
(opw). The geometric characteristics of the wells (widths,
depths, etc.) and the height and location of the barrier be-
tween them depend on the interaction parameters. The bar-
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rier has different heights for the ipw and opw beads. For a
given protein the location r, of the outer boundary of the
opw is determined by the size of the cluster and densities p,
and p,. The existence of an opw allows one to consider the
absorption of a bead by the cluster as an escape of the bead
from the opw by crossing over the barrier into the ipw. One
can therefore use the mean first passage time analysis to
determine not only the emission rate but also the rate of
absorption of beads by the cluster.

For the model proteins considered (a short BPR of N
=124 residues and a large protein of N=2500 residues) with
the above choices of the system parameters our model esti-
mates show that the time of protein folding is determined
mainly by the time necessary for the first nucleation event to
occur, as expected and as was the case in the original NMPF
model. With the diffusion coefficient D'¥=10"% cm?/s, the
modified NMPF model estimates the characteristic time of
folding of the short protein to be about 6 s at pH=8.3, 5 s at
pH=7.3, and 8 s at pH=6.3, while the folding times for the
long protein are about 165 s at pH=8.3, 140 s at pH=7.3,
and 220 s at pH=6.3. For D™=10"% cm?/s, the folding
times of the short protein are predicted to be about 600, 500,
and 800 s at pH=8.3, 7.3, and 6.3, respectively, while for the
long protein they are about 16 500, 14 000, and 22 000 s at
pH=8.3, 7.3, and 6.3, respectively. The folding times for the
model BPR are in a good agreement with the experimentally
observed folding times of real BPR (see Ref. [38], where the
BPR folding time was reported to be on the order of 1000 s,
and references therein). This suggests that the smaller value
of the diffusion coefficient of protein residues in the un-
folded state, D™=10"8 cm?/s, is more appropriate to model
the folding of proteins whereof the sequence and structure
are similar to those of BPR. On the other hand, faster folding
proteins are probably better characterized by faster diffusion
of their residues in the unfolded state and hence are better
modeled with DV=107% cm?/s. (Note again that, besides
linearly depending on 1/D'v, the folding times predicted by
the above model are also sensitive to the energy parameter in
the dihedral angle potential, the only interaction parameter of
adjustable character). For the short protein the effect of pH
on the protein folding time is significantly less pronounced in
the modified model than in the original one. This was also
expected because the contribution of the electrostatic inter-
actions to the overall potential field is less important in the
modified model compared to the original one. As previously
[14], among all three pH’s considered, the physiological pH
provides the lowest folding time. Clearly, one cannot neces-
sarily conclude that the folding time as a function of pH has
a minimum at 7.3, but one can suggest that this function does
have a minimum at some 6.3 <pH <8.3. To more accurately
determine the location of this minimum, it is necessary to
calculate the folding times for more values of pH. The sen-
sitivity of the folding time to pH is stronger for the large
protein, which can be accounted for by larger net charges
that the cluster of native residues can have during protein
folding. Our results allow us to make some meaningful com-
parison of the folding times for two similar proteins differing
(mainly) in the total number N residues in the polypeptide
chain (with all the mole fractions of different kind of resi-
dues being the same). The dependence of the folding time on
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the protein length (i.e., N) suggested by our model is in a
qualitatively good agreement with the results previously re-
ported in Refs. [39-41] and obtained by using extensive
Monte Carlo simulations of lattice model proteins. Accord-
ing to the latter (and several other theoretical studies), the
folding time as a function of N can be approximated by a
power-law function with the exponent ranging from 3 to 6.
Our results would suggest the value of 1.1 for this exponent,
but more detailed studies of several proteins with different
lengths (i.e., N’s) are needed for more accurate conclusions.

V. CONCLUSIONS

We have recently developed [13,14] a kinetic model for
the nucleation mechanism of protein folding (NMPF) in
terms of ternary nucleation by using the first passage time
analysis. The main idea underlying the NMPF model con-
sists of averaging the dihedral potential in which a selected
residue is involved over all possible configurations of all
neighboring residues along the protein chain. The combina-
tion of the average dihedral potential with the effective pair-
wise potential of a selected residue and with a confining
potential caused by the bonds between the residues provides
an overall potential around the cluster. As a function of the
distance from the cluster center, the overall potential field
has a double-well shape. This allows one to develop a self-
consistent kinetic theory for the nucleation mechanism of
protein folding and evaluate its characteristic time.

In the original NMPF model hydrogen bonding was not
taken into account explicitly. To improve the NMPF model,
we have developed a probabilistic hydrogen bond (PHB)
model for the effect of hydrogen bond networks of water
molecules around two solute particles (immersed in water)
on their interaction [23,24]. That model suggests that the
disruption of the boundary hydrogen bonds, which occurs
when the first two hydration shells of two solute particles
overlap, results in a short-ranged but strong attraction be-
tween the particles.

In this paper we have combined the PHB [23,24] and
NMPF [13,14] models by slightly modifying the former to
adapt it to protein folding. The folded cluster of the protein
consists of three kinds of residues; hence, its surface can be
expected to have a composite (hydrophobic-hydrophilic)
character. On the other hand, a single residue in the unfolded
part of the protein is either hydrophobic or hydrophilic (neu-
tral residues are treated as hydrophobic). The PHB model has
been extended to the solvent-mediated interaction of a
spherical particle of composite nature (modeling a cluster of
folded protein) with (1) a spherical hydrophobic particle
(modeling hydrophobic and neutral protein residues) and (2)
a spherical hydrophilic particle (modeling hydrophilic pro-
tein residues). In such a way, the water-water hydrogen
bonding is taken explicitly into account in a modified kinetic
model for the nucleation mechanism of protein folding. The
additional contributions to the interaction potentials, arising
due to the disruption of hydrogen bond networks around the
interacting particles, have been thus added to the overall po-
tential field around a cluster in the NMPF model.

For a numerical illustration we have again applied the
model to the folding of two model proteins, one mimicking
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bovine pancreatic ribonuclease, protein consisting of N
=124 residues whereof N,=40 are hydrophobic, N;=81 hy-
drophilic (of which ten are negatively and 18 positively ion-
izable), and N,=3 neutral, and the other—representing large
proteins—consisting of N=2500 residues with N,=807, N,
=1633, N,=60 (with 202 negatively and 363 positively ion-
izable residues). Numerical calculations, performed at pH
=8.3, 7.3, and 6.3, show that in the modified NMPF model
the effect of pH on the protein folding time is less pro-
nounced than in the original one (and the smaller the protein,
the smaller this effect). This was expected because the con-
tribution of the electrostatic interactions to the overall poten-
tial field is less important in the modified model compared to
the original one. The hydrogen bond contribution now plays
a dominant role in the total potential around the cluster (ex-
cept for very short distances from the cluster surface where
the LJ-type repulsion between the cluster and a residues in-
creases infinitely thus giving rise to the inner wall of the
double-well potential field). This contribution is by an order
of magnitude stronger for hydrophobic residues than for hy-
drophilic ones. Besides, for the former the range of residue-
cluster distances, at which the contribution exists at all, it is
twice as large as for the latter.

In conclusion, one can note that, in principle, a similar
approach can be used to develop a model for protein folding
in a barrierless way, much like it was used in the model for
barrierless protein denaturation [42]. The only difference
would be that thermal denaturation is characteristic of most

2
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proteins, while fast-folding proteins (i.e., proteins folding in
a barrierless way) are rather rare, so it is not straightforward
to determine whether the model proposed above would cap-
ture this peculiar feature of folding of such rare proteins. A
significant computational effort would be required to demon-
strate that some specific proteins with specific sets of inter-
action parameters under specific conditions exhibit barrier-
less folding.

APPENDIX A: EXPLICIT EXPRESSIONS FOR V,(r), V,,(r),
AND ¥/*(r)

In Eq. (2) the volume of the region resulting from the
overlap of the first two hydration shells of the solutes R and
R’ depends on whether the latter (i.e., the smaller solute) is
hydrophobic or hydrophilic. If it is hydrophobic, then its
IHS is a spherical layer with the inner and outer radii R’
+ %( n+m,) and R’ + %( n+n,)+ % 7.» Tespectively, whereas its
2HS is a spherical layer with the inner and outer radii R’
+ %( n+n,)+ % 7, and R’ + %( n+7m,)+ % 1, respectively. On
the other hand, if the smaller solute is hydrophilic, then it
does not have 1HS and 2HS, but it has an exclusion sphere
of radius R’+%(77+ 7,,) Wherein no water molecules can be
located. In both cases, the 1HS and 2HS of the composite
solute are determined by three concentric spheres of radii
R+5(n+7,), R+5(n+n)+3m,. and R+3(n+75,)+57,.
Therefore, the overlap volume V,(r) can be found as

2

1 3 1 3 ,
Vio(r) = Voo 1R + 5[77+ 7]+ Zn.R' + Z[n+ 3,1+ 2 (hydrophobic R’)

V,(r) =
2 2

with

1 3 1
Vlo(r) = Vex(r’R + _[7’+ nw] + _77W’Rl + _[77+ 77w:|

(A1)
) (hydrophilic R'),

2

(A2)

V,(r,a,b) = %(a +b—r)(r?+2ra-3a*+2rb—3b*+ 6ab),
r

determining the volume of the region resulting from the overlap of two spheres of radii a and b as a function of the distance
r between them (i.e., between their centers). Likewise the overlap volume V,,(r) (of the 1HSs of the solutes) in Eq. (4) is

determined as

1 1 1 1 _
Vim(r) = V| r.R+ 5[77+ 2]+ 5 meR + [0+ 7]+ 2 (hydrophobic R')

2 2
V)= 1 S (A3
Vin(r) = Vex(r,R + 5[77+ 7ol + Enw,R’ + 5[77+ 77W]> (hydrophilic R’).

In order to calculate the decrease in the total number of
BHBs in the first two hydration shells at a distance r between
the solutes, it is convenient to classify them as follows. In the
vicinity of a hydrophilic solute all hydrogen bonds are as-
sumed to be the same as in the bulk water. For a hydrophobic

particle, a BHB bond can be of type 1 (when both water
molecules involved belong to the 1HS) or of type 2 (when
one of the water molecules involved belongs to the 2HS).
For the composite solute, in addition to types 1 and 2, a BHB
bond can be also of type 3 when it is formed with a hydro-
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philic site on the solute surface. The densities of types 1 and
2 BHBs are different for solutes R and R’ not only because
they are of different sizes but also because they are of dif-
ferent nature (the smaller solute R’ cannot give rise to type 3
bonds at all). They can be all calculated by following the
same procedure as in Refs. [23,24]. The simplest way to
estimate the average density of type 2 bonds in the 2HSs of
the two solutes and the average density of type 1 bonds in
the 1HSs of the particles is to take their arithmetic means.
One can thus obtain expressions for ¥,”. If the solute R’ is
hydrophobic,

4

1 n Vv \%
e s (2)_1+ 1- —1>V —v
Vg znePw{(neX Vz ( X)Vé [ bo(r) bm(r)]

+ (ﬂ(OSX(I) + X(3)) + OSX) me(r)} ’
n,

(Ad)
whereas for the hydrophilic solute R’ we have
= nepw{ %X(z)%[vzo(") = Vim(r)]
+ %(0.5x‘” + x“))v,m(r)}, (A5)

In these expressions, V; and V, are the volumes of the 1HS
and 2HS of the composite solute; V| and V; are the volumes
of the 1HS and 2HS of the hydrophobic solute R'; y is the
probability that a hydrogen bond, formed by a IHS molecule
in the vicinity of a hydrophobic solute, is a bond of type 1
(previously [23,24], it was estimated to be y=0.083 168 5);
whereas 'V, ¥'?, and x® are the probabilities that a hydro-
gen bond, formed by a 1HS molecule in the vicinity of a
composite solute, is of type 1, 2, or 3, respectively. The latter
three probabilities can be calculated as

1 0.5 0.(x)
X(D:_J dKf d® sin®, C
CJy ~0,(x)

0.5 P
= J dKf dO sin O, (A6)
0 -0, (k,wp)
1 (05 a2
X2 = EJ dKf dO sin ©, x
0 0,(x)
1 0.5 -0,,(x)
= —f dKf d® sin O, (A7)
Cly -0, (k.wp)

with k=¢&/ 7, (€ being the distance of the selected molecule
from the inner boundary of the 1HS (see Fig. 2), 0,(¢)
=arcsin k, 0 (¢ =arcsin(0.5-«), and O (&) =arcsin(0.5- «).
Numerically, these expressions provide x"'=0.057 898 6,
x?=0.638 261, and ¥¥=0.303 84.

It should be noted that in Egs. (A4) and (A5) it is assumed
that when the 2HSs of both particles overlap, a single mol-
ecule in the shared regions of their 2HSs can form type 2
BHBs only with the 1HS molecules of one solute. Although
this assumption may lead to some inaccuracies in the expres-
sions for v/”, its effect on ¢"™ can be expected to be signifi-
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cant only at large distances >4 where the potential "
itself is relatively small. With decreasing r the effect of this
assumption on ¢hb will also decrease. Indeed, because of
strong orientational restriction on the 1HS molecules, the
water molecules belonging to the 1HS of one plate can
hardly form type 2 BHBs with the molecules belonging to
the 1HS of the other plate. Besides, when one of the particles
itself (with an excluded spherical shell of thickness 7) over-
lap with the 2HS of the other particles, water molecules from
the latter are removed without replacement hence type 2
BHBs that they were involved in are broken without the
probability of being reformed. Therefore, Egs. (A4) and (A5)
can be considered to provide reasonably good estimates for

7

V" as a function of r.

APPENDIX B: EVALUATION OF THE PROTEIN
FOLDING TIME IN THE FRAMEWORK OF TERNARY
NUCLEATION FORMALISM

Let us use W; =W, (v,,v,,v,) and W, =W!(v,,v,,v,) (i
=b,l,n) to denote the rates of emission and absorption, re-
spectively, of beads of type i by a cluster containing v, hy-
drophobic, v, hydrophilic, and v, neutral residues. These
rates represent the fundamental kinetic characteristics of the
protein folding and unfolding processes. At any given tem-
perature both functions W~ and W* can be determined by
using the first passage time analysis (the method was first
[30-32] applied to calculating W-=W~(v) in unary nucle-
ation and later extended [13,14] to both W~ and W* in pro-
tein folding and unfolding).

Consider a heteropolymer bead (i.e., a protein residue) of
type i (i=b,l,n) performing a chaotic motion in a spherically
symmetric potential well ¢{(r) with one boundary infinitely
high (say, at r=r,) and the other one of finite height (say, at
r=r,). Te mean first passage time 7 necessary for the mol-
ecule to escape from the well is

11 (™ b Y
= ZB,[ dr rze"l'(’)j dy y'zeq'@)f dx x?e” V0,
ra r T,

a

(B1)

where D is the diffusion coefficient of a residue, W(r)
=ydr)/ kgT, and

’b
Z:f dr rre ¥, (B2)

a

The expression for 7 was derived by solving a single-
molecule master equation for the probability distribution
function of a surface layer molecule (residue or bead) mov-
ing in a potential field (r) [13,14]. The diffusive motion of
the bead is assumed to be governed by the Fokker-Planck
equation [33,34]. The Fokker-Planck equation reduces to the
Smoluchowski equation (which involves diffusion in an ex-
ternal field) if the relaxation time for the velocity distribution
function of the molecule is very short and negligible com-
pared to the characteristic time scale of the passage process.

The rates of emission and absorption of beads of type i by
the cluster (i.e., the numbers of residues of type i escaping
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from the ipw into the opw and from the opw into the ipw,
respectively, per unit time) are provided by

"= Fo oL (B3)

where N; and N} denote the numbers of molecules in the ipw
and opw, respectively, and 7; and 7] are the mean first pas-
sage times for the transition of a bead of type i from the opw
into the ipw and from the ipw into the opw, respectively.
Applying Egs. (B1)—(B3) to calculate W-, the locations of
the boundaries of the ipw must be used, that is, r,=R and
r,=R+\", with R being the radius of the cluster and A~ being
the width of the ipw; the diffusion coefficient must be taken
to be D'V. One the other hand, in calculating W*, the loca-
tions of the boundaries of the opw must be used in Egs.
(B1)—(B3), that is, r,=R+A"+\* and r,=R+\", with \* be-
ing the width of the opw; the diffusion coefficient must be
taken to be D°V. The quantities N; and N; can be calculated
as the product of the “volume X number density,”

i

4ar
=S LR+ )P = Rpy,

N; = %T[(R + N+ A= (R+1M)3 ]y,

where p; and p,, are the number densities of residues in the
folded and unfolded parts of the protein.

Knowing the emission and absorption rates as functions
of v,,v;,v,, one can find the nucleation rate J; and estimate
the time 7, necessary for the protein to fold via nucleation.
Roughly speaking, the protein folding (via nucleation) con-
sists of two stages. During the first stage, a critical cluster
(nucleus) of native residues is formed (nucleation proper).
Until the nucleus forms, the emission rate W~ is larger than
W*, but the cluster still can attain the critical size and com-
position by means of fluctuations. At the second stage the
nucleus grows via regular absorption of native residues
which dominates their emission, W~ << W*. Thus, the folding
time is given by

tr=t,+1,, (B4)

where ¢, is the time necessary for one critical cluster to
nucleate within a compact (but still unfolded) protein and 7,
is the time necessary for the nucleus to grow up to the maxi-
mum size, i.e., the size of the entirely folded protein. The
time ¢, of the first nucleation event can be estimated as

t, = 1/[J, Vo], (B5)

where J, is the steady-state rate of ternary nucleation and V,
is the volume of the unfolded protein in a compact configu-
ration.

The nucleation rate J is found by solving the steady-state
version of the kinetic equation of ternary nucleation govern-
ing the temporal evolution of g(v,,v;,v,,?), the distribution
of clusters with respect to their three independent variables
of state at time ¢. This equation has to be solved in the vi-
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cinity of the saddle point of the function G(v,v;,v,)=
_kBT ln[ge(yb’ v, Vn)/(pbu+plu+pnu)]’ where ge(vb’ 4B Vn) is
the equilibrium distribution of clusters, which can be con-
structed once the emission and absorption rates W,
=W; (v, v, v,) and Wi =W;(v,,v;,v,) are known as func-
tions of v,,v;, v, (for more details, see Refs. [13,14]). Note
that in the first passage time analysis based approach to the
kinetics of multicomponent nucleation the function
G(v,,v;,v,) plays a role similar to the free energy of cluster
formation in the classical nucleation theory (CNT). It deter-
mines a surface in a four-dimensional space which, under
appropriate conditions (i.e., high enough metastability of the
initial phase), is expected to have the shape of a hyperbolic
paraboloid with at least one “saddle” point at the coordinates
Vpes Vies Vpe (hereinafter the subscript “c” marks quantities at
the saddle point). The steady-state kinetic equation of nucle-
ation has to be solved subject to two boundary conditions,
with one expressing the assumption that small clusters are in
equilibrium and the other expressing the absence of too large
clusters,

[Nol/2mksT
5= 0 ge(vbc’ Vies Vnc) s
V= det(G"/2mkgT)

(B6)

where G” is the matrix of second derivatives of the function
G(v,,v;,v,) with respect to v, v, v, and N, is a negative
eigenvalue of the matrix A-G”, with the elements of the
diagonal matrix A of the absorption rates given by A;;
= 5,-ij (i,j=b,l,n), with 5,-j being the Kronecker delta. Note
that although the form of the expression for J; in Eq. (B6) is
identical to that in Ref. [43], the latter was obtained (and
applied to binary and ternary nucleation) in the framework of
CNT. The crucial difference is hidden in the method for ob-
taining the equilibrium distribution g,(v,,v;,v,). In the Ki-
netic approach to a nucleation theory (originally proposed in
Refs. [30-32]) it is obtained by using the mean first passage
time analysis and the principle of detailed balance, while in
CNT (whereupon its use had been previously based) the
equilibrium distribution would have the form (pp,+py,
+p)expl-F(v,, v, v,)], where F(v,,v;,v,) is the free en-
ergy of formation of a cluster, derived by using the concept
of surface tension.
The growth time 7, is provided by the integral

Np dv
v Wi (Vs (1), 1, (1)) = Wiy (0, wi(3,), v, (1))
(B7)

l‘g2

Here, the functions v;=v,(v;,) and v,=v,(v,) determine the
growth path in parametric form and can be found as the
solution of a couple of simultaneous differential equations
(see Refs. [13,14])

dvp Wi (v, v,v,) = Wi (w21, 1)
dVb W-;;—(Vb, Vla Vn) - W}:(Vbs Vl? Vn) |

dv, _ Wo (v, v, 1) = W, (0, v, v,)

dVb WZ(Vba vy, Vn) - W;(Vba vy, Vn) ‘
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